Remarks on a Matrix Transformation for Linear Differential Equations
نویسندگان
چکیده
منابع مشابه
Remarks on a Matrix Transformation for Linear Differential Equations
The remarks of this note are concerned with a result on transformations stated below as Theorem A, and are two-fold in nature: firstly, there are comments on the relation of this theorem to results of Perron [3] and Diliberto [l; 2], in the hope of correcting a misunderstanding that has arisen in this regard; secondly, there are remarks stressing two general properties of admissible transformat...
متن کاملA Prufer Transformation for Matrix Differential Equations
Presented to the Society, December, 1955 under the title ^4 necessary condition for nonoscillation of a system of second order differential equations, and August, 1956; received by the editors August 2, 1956. 1 These results were obtained while the author held a National Science Foundation grant, NSF-G1825 and was at Yale University. Now at the University of Utah. 2 This paper contains a biblio...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1957
ISSN: 0002-9939
DOI: 10.2307/2033285